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1. Introduction

The Atmospheric Infrared Sounder (AIRS), the Advanced Microwave Sounding Unit

(AMSU-A) and the Microwave Humidity Sounder (MHS, formerly AMSU-B) together

constitute the advanced sounding system facility for the Earth Observing System (EOS).

This report is a summary of the EOS "phase B" activities of team members P. W.

Rosenkranz and D. H. Staelin, through 1991. Work is continuing in the execution phase.

The principal effort, design of algorithms for retrieval of geophysical parameters, is

described in Section 2. Section 3 describes aspects of aircraft-based radiometer

measurements that are relevant to AIRS/AMSU. (This experimental program was primarily

supported by NASA under a separate grant.) Section 4 is a discussion of calibration issues

for AMSU-A and MHS. Since these will be NOAA operational instruments, it is

anticipated that calibration algorithms, including antenna pattern corrections, will be made

available to the EOS program in a timely way. The team members' efforts in this area

include cognizance of these algorithms with respect to AIRS objectives, but not algorithm

redefinitions or coding. Appendix A is the Preliminary Execution/Operations Phase Data

Plan. Appendix B contains memoranda prepared by team members Rosenkranz and Staelin

for the AIRS project.

2. Algorithm Development

2.1 Line-by.line Transmittance Algorithms

Recent laboratory measurements made by Liebe et al. (1991) of microwave attenuation

in dry air were used to revise the line-mixing coefficients for the 60-GHz band of oxygen.

These coefficients pertain to a band shape described by the equation

2

aCv)=n- st (vlv 
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Yi- (V+V-_ Yi

(1)

where oc(v) is the absorption coefficient at frequency v, n is the number density of 0216

molecules, S i is line intensity, v i is line frequency, Yi is the line broadening parameter, and

Yi is the line mixing parameter. The temperature and pressure dependence of the Y's were

modeled by
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Yi = (a5 00.8 + a6 01"8) P, (2)

where 0 = 300/T. The coefficients a5 and a6 were fitted by a constrained ridge-regression

to the meaasured spectra at 279, 303 and 327K, for 700 hPa pressure. The new

coefficients are given by Liebe et al. (1992), and were incorporated in a subroutine

provided to the TLSCF at JPL in January 1992.

Algorithms for calculation of microwave attenuation by water vapor and by small liquid

water droplets have also been sent to the TLSCF.

2.2 Temperature and Moisture Profile Retrieval Algorithm

Figure 2.1 is a block diagram of the overall temperature and moisture profile retrieval

processing that we envision for AIRS/AMSU/MHS. This is a recursive algorithm in which

the final profiles of temperature and moisture provide initial profiles for the next spot.

(Additional discussion of this scheme is contained in the team members' proposal,

"Recursive Estimation of Geophysical Products with AIRS/AMSU Data.") AMSU and

MHS measurements are processed first, to obtain an intermediate profile (labeled "second

profile") which provides the starting point of the AIRS cloud-clearing and retrieval.

Variations on the scheme shown in this figure are also possible: for example, stratospheric

channels from AIRS for which cloud contamination is minimal could be input to the first

retrieval along with AMSU data. However, the instrument-based division of processing

shown in the figure offers the opportunity to check for inconsistencies between calibration

of the instruments.

Figure 2.2 shows an expanded view of the surface parameter estimation block from the

previous figure. Depending on the type of surface, either of the two algorithms shown in

Figures 2.3 and 2.4 are applied. The "cryosphere" algorithm, Figure 2.3, is used for non-

frozen land as well as ice. The surface brightness model is a three-parameter version of the

model of Grody (1988):

¢(v) T s = [T O + (V/Vo)2T**] / [1 + (V/Vo)2], (3)

where e(v) is emissivity as a function of frequency v and T s is surface temperature. The

algorithm uses the four AMSU window channels to solve for the parameters T o, T**, v o

and precipitable water vapor. At present, the algorithm does not include liquid water.

Hence, precipitation over land will cause some perturbation of the inferred surface
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emissivity.

Thehydrospherealgorithm,Figure2.4,isappliedoverwater. Thegeophysicalmodel
includesatmosphericabsorptiondueto oxygen,watervapor,andliquid waterclouds,and
alsosurfaceroughness.Thesurfaceemissivitymodelisof theform

e(v) = es(V,T s) + [Oe(v)/Ou.] u,, (4)

where es(V,Ts) is smooth-surface emissivity computed using a polynomial approximation

to the Klein and Swift (1977) equations, and u, is surface friction velocity (a measure of

wind stress on the surface). The coefficients within the square brackets in Eq. (4) will be

determined empirically (e.g., Rosenkranz, 1992). Precipitable water vapor, liquid water

and u, are solved for by the method of iterated minimum-variance. A scattering albedo at

89 GHz is also produced, as a precipitation indicator.

The profile retrieval algorithm (denoted by "retrieval 1" in Figure 2.1), is shown in

Figure 2.5. This is an iterative algorithm in which the profile increments are obtained by

the minimum-variance method, using weighting functions computed for the temperature

profile with a rapid transmittance algorithm. In simulations, two iterations are usually

required, starting from a standard prof'fle. The moisture profile can have two components,

vapor and liquid, depending on whether the vapor at a given leveI is at the saturation value.

The reapportionment block at the bottom of this figure is expanded in Figure 2.6. This

algorithm converts any vapor that exceeds the saturation value to liquid. The conversion

factor is a function of temperature that has not yet been determined.

2.3 Algorithms for Research Products

2.3.1 Sea-Ice Cover and Land Snow/Ice Cover Index

These algorithms have similar architecture. Both employ point operators on the

AMSU-A brightness temperatures (for 50-km horizontal resolution) and/or MHS

brightness temperatures (for 15-km resolution). Auxiliary inputs to the algorithms are:

land/sea flag, land elevation, latitude, longitude, and estimated surface temperature. The

point operators are of the form

Ci = Y_aijkl m Bj 1 Bk m, (5)

with

B = D A, (6)



where D is a matrix (possibly selected from a library) and A is a vector of selected

parameters (e.g. brightness temperatures).

2.3.2 Precipitation Index

This algorithm employs, in addition to point operators as discussed above, area

operators of the form

H = F0 * O (7)

operating in an area A = ac, where a is the length of a block of data along the satellite track

and c is the swath width; G and H are 1-D or 2-D scalar fields, F0 is a filter function

dependent on the scan angle 0, and * denotes the convolution operation. The auxiliary

inputs to the algorithm will be the land/sea flag, land elevation, and adjacent estimates of

surface temperature and temperature and humidity profiles. Figure 2.7 illustrates the

detection of a precipitation signal in AMSU data.

The theoretical calculations on which the precipitation algorithm will be based include

the following assumptions:

spherical hydrometeors, water or ice,

Mie scattering,

planar-stratified atmosphere and clouds,

reduced phase matrix - asymmetric, two Stokes' parameters,

discrete angles (-8) and levels (- 40),

iterative calculations,

various size distributions - e.g. Marshall-Palmer,

climatology - to be determined.

Figure 2.8 shows that of those rain cells observed during the GALE and COHMEX

missions their "microwave" diameters exceeded 50 km for approximately one-third of the

cells, i.e. AMSU would resolve them. Since these cell diameters substantially exceed the

thickness of these storms, the laminar approximation seems appropriate. At worst, the

laminar structure might not f'dl an entire beam.

Figure 2.9 makes another point. It shows that microwave spectra observed near

oxygen absorption bands can vary markedly, but with only two or three observable degrees

of freeedom, i.e., since the observed spectra vary in such simple ways, overly complex
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physicalmodelsmay not be relevant. Figure 2.10showstheabsorptionand scattering

cross sections for rain and ice at a much wider range of frequencies. Again, the spectra are

very simple in form and few degrees of freedom suffice to represent them quite well.

In Figure 2.11, we see comparisons between the brightness temperatures observed

during COHMEX at 53.65 GHz and 1 I8.75 GHz. This distribution correlates very well

with the distribution of the brightness temperatures predicted by the simple proposed

scattering model and the equation of radiative transfer. This point is made even more

strongly in Figure 2.12, where the two degrees of freedom for the observed l l8-GHz

spectra, labeled here Mode 1 and Mode 2. are shown to agree very well with the same

parameters predicted using these simple scattering models based on parameters inferred

from CP-2 radar observations during this particular flight..

In conclusion, the simple assumptions made for the scattering model to be used in

AMSU simulation computations appears to be sufficiently accurate given the limited

degreees of freedom of the observations and their ability to be approximated well by the

models suggested here.

3. Aircraft.based Measurements

During the Convection and Precipitation/Electrification (CAPE) experiment, a suite of

instruments on the NASA ER-2 high-altitude aircraft made measurements that simulated the

types of data that will be obtained from EOS. MIT provided the Millimeter-wave

Temperature Sounder (MTS), which is a dual-band, 52-54 and 119 GHz, radiometer. This

system is capable of either down-looking or up-looking observations. In the down-looking

mode, particular interest attaches to the response of MTS to hydrometeors; this data will be

useful in understanding future AMSU measurements of precipitation. The up-looking

mode can be used to test theoretical expressions (such as described in Section 2.1) for

atmospheric transmittance.

The CaPE experiment was conducted during July and August 1991. Table 3.1

summarizes the flights and gives the approximate amount of data obtained with MTS.

Numerous problems with intermittent cable connections and a defective I/O board in the

computer resulted in complete loss of data from five flights. When data was recorded, it

was usual for a few of the nine channels to be inoperative. Despite these difficulties, some

data was obtained from nine flights. Since there is a great deal of redundancy among the

eight channels at 118.75 GHz, most of this data is, in principle, interpretable. The 53 GHz

channel, however, exhibited instabilities that appear to have made this channel unusable.

Among the observations of precipitating cloud systems, the most noteworthy were two
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overflights of Hurricane Bob on August 19. These high-resolution measurements of a

hurricane are unique at these wavelengths. The more transparent channels show large

perturbations from the clouds, while the higher-peaking channels respond to temperature

variations (on isobaric surfaces). The measurements form Hurricane Bob are currently

being analyzed, and a paper will be prepared for publication.

Following the CaPE experiment, significant improvements in reliability and

performance of the MTS were achieved as a result of modifications to the 53-GHz front-

end subsystem and in the back-end/computer subsystem. Flights in 1992 (STORMFEST)

have demonstrated reliable operation of the instrument.

Table 3. I

1991 CAPE flight summary - MTS

date hrs. of viewing comments

recorded

data

7-21 5 up

7-24 0

7-28 0

7-30 1 down

8-1 0

8-5 6 down

8-6 1 down

8-8 0

8-12 7 up

8-13 2 up

8-16 0

8-17 6 up

8-19 2 down

8-21 6 down

pre-convective moisture

thunder storms over land

no cal.

Hurricane Bob

trace gas net.
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4. Calibration of AMSU and MHS

4.1 Introduction

This section defines principles and procedures for calibration of the AMSU and MHS

instruments. Subsections 4.2 to 4.4 deal with the prelaunch procedures in three categories:

radiometric calibration, which is the determination of the relation betwen the input mean

brightness temperature (i.e. as from a uniform black-body radiating environment) and the

output counts from each channel of the instrument; spectral calibration, which is the

relative response of each channel to input brightness as a function of frequency; and

directivitv calibration, which is the relative response of each channel to input brightness as

a function of angular coordinates and polarization. Subsection 4.5 deals with issues of

cross-calibration between AMSU and MI_. These procedures are postlaunch and relate

primarily to radiometric calibration, spectral and directivity calibration being a prerequisite.

4.2 Radiometric Calibration

Both AMSU and MHS will employ two-point external calibration sequences: the

antenna reflectors will rotate from the earth to cold space to an on-board target.

Conceptually, this method of calibration is simple and straightforward; the critical issues

are related to departures of the instrument response from linearity between the two

calibration points, and to the deviation of the on-board target from unity emissivity. (Stray

radiative energy impinging on the sidelobes of the antennas when they view the target or

space is also an issue, but we consider this to be part of directivity calibration.)

In the absence of nonlinearity, the radiometer calibration equation would be

IA= IC+ (VA"VC) (IIa- IC) (Via"VC)'I (8)

where IA is the radiometric input intensity, usually expressed in degrees Kelvin, Ic and Ill

are the radiometric intensities of the two calibration points (distinguished from their

physical temperatures as discussed below), and V A, V c, Via are the corresponding

radiometer outputs (counts).

Departures from linearity are expected to be small, so we will assume that the

radiometer output can be represented by a quadratic function of the pre-detector power

level, which in turn is proportional to the sum of the input radiometric intensity IA and the

radiometer noise temperature referenced to the input, T N. Hence
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V A - V o + g (IA + T N) + 13[g (IA + TN)]2 (9)

where V o, g and 13are coefficients that characterize the instrument response. V o can be

eliminated by taking

(VH -VC) /OH" IC) = g [1 + 13g (2TN + IH + IC)]. (I0)

A similar equation exists in which IA is substituted for IH; thus

IA = IC + (VA-Vc) (IH-Ic)(VH-Vc)-I [I+ 13g (2TN+I H +I(7)][I + } g (2TN+IA+Ic)] "I,

(11)

instead of Eq. (8). Now, if we retain only terms of first order in 13,Eq. (11) simplifies to

IA=IC+(VA"VC)OH-IC)tWH-VC)-I[I+13gOH"IA)]" (12)

Since g is multiplied by 13 on the fight side of Eq.(12), we can to the same order of

accuracy approximate g (IH - IA) by (V H - VA):

[A = IC + (VA" VC) (IH" IC) (VH" VC)-I [i + 13(V H - VA) ]. (13)

With two calibration points, 13cannot be determined in orbit; it can be measured in pre-

launch test with a variable-temperature "earth target," by fitting Eq. (13) to measurements

of V A as a function of IA. We can deduce from Eq. (12) that if the maximum effect of the

13g-term (with IA midway between the calibration points IC -- 3 K and IH = 300 K, which

implies (V A - Vc)(V H - VC)-I = 0.5) were to be as large as 0.5 K, then I_g ~ 2"10 -5 K -1.

In Eq. (9) the ratio of the quadratic to the linear term is 13g(IA+TN); even for a rather low

T N of 500 K, the system nonlinearity with IA = 300 K would then be ~ 1.5 %, which

would exceed specifications. Hence a significant nonlinearity of the radiometer response

in the overall system tests would imply a faulty instrument.

The radiometric intensities that were used in the above calibration equations can be

different from physical temperatures for three reasons. First, for an ideal black body at a

temperature T we have

I = (hv/k) [exp(hv/kT) - I] "1. (14)
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In the (Rayleigh-Jeans) limit v/T --->0, I = T; even at most microwave frequencies, the

difference between I and T amounts to a constant offset that usually is ignored. However,

at the high frequencies of the MHS, T - I is significantly different for cold space than for

higher temperatures.

Second, the onboard calibration target is not an ideal black body. Since the reflector is

very close to the target when observing it, radiant energy reflected from the target will

originate mostly from parts of the instrument at similar temperatures. Target emissivity

might therefore not be a critical issue, except for the fact that the output response of a

radiometer can be affected by the standing-wave ratio at its input. This sensitivity can be

determined by replacing the radiometer antenna with a tunable short and measuring the

change in radiometer output as the position of the short is varied. This is a type of

standing-wave measurement, in which the wave generator is the local oscillator. Since the

radiometer has a square-law detector, the measurement can be described with a power

standing-wave ratio,

PSWR = (1 + IFI)2 / (1 - IFI)2 = 1 + AI A / (IA+TN) (15)

where F is a complex amplitude reflection coefficient and AI A is the peak-to-peak variation

of calibrated radiometer output observed in the tunable-short test. F includes factors due to

coupling into the mixer, isolation between the mixer and the short, as well as the reflection

coefficient of the short itself, which has unit amplitude but variable phase. For the present

discussion, we need only note that these factors imply IFI << 1; hence, to first order,

PSWR : 1 + 4 IFI (16)

and I11 is therefore proportional to AI A by Eq.(15).

When the tunable short is replaced by the antenna, the value of F is reduced in

proportion to the amplitude of the return wave, to a value F A. The reflected wave from the

target may in fact be overwhelmed by a wave from the antenna reflector, part of which lies

very close to the edge of the feed horn. It is important to note that the wave component that

is significant in the calibration problem is the one that varies with antenna position.

Because the polarization is linear, the signal reflected back into the horn by the reflector will

be dependent on the antenna pointing direction. The in-orbit calibration error AI expected

with a given value of the tunable short variation AIA is
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AI = rA AI A , (17)

where

rA=0.5maxi, j [FA(i)- FA(j) [ (18)

and FA(i) is the complex amplitude reflection coefficient of the antenna at position i.

Equation (18) incorporates only the variable reflection from the antenna, which, because it

is position-dependent, is not removed by the calibration algorithm. One way to ascertain the

level of this reflection is to measure carefully the VSWR's and the standing-wave-pattern

null locations of a representative complete antenna horn assembly in the laboratory as the

antenna rotates to _ll possible positions, including calibration positions. Such

measurements should be made at both the local oscillator frequency and its second

harmonic.

These errors can vary over portions of an orbit as instrument temperatures, voltages,

and dimensions vary, and so they are potentially very pernicious. Let us assume that a

tolerable calibration error from this effect is + 0.3 K, or 0.6 K peak-to-peak. Such random

0.3K errors in the hot and cold calibration measurements and in the atmospheric

observation can combine to yield noise-free calibrated observation errors of 0.6K. For a

reflected local oscillator wave of-30 dB (rA= 1/32 in amplitude), AI A in the tunable short

test should be less than 0.6 K. 32 = 19 K peak-to-peak.

The third potential reason for differences between radiomctric intensities and the

physical temperatures of calibration points is radiant energy from a source at a different

temperature, either on the spacecraft or elsewhere, entering the antenna sidelobes. These

contributions can be simulated in a test chamber with a mockup of the spacecraft.

4.3 Spectral Calibration

The radiomctcr responds to a weighted average of the input intensity IA(v),

IA = j"IA(V ) F(v) dv / SF(v) dv, (19)

where F(v) is the spectral response function of the radiometer. Generally, the variation of

F(v) with v is set by the I.F. filters, and if the first radiometer stage is a mixer, the two

passbands are very nearly symmetric about the local oscillator frequency. Departures from

symmetry can be caused by the impedance match of the mixer and I.F. amplifiers varying

over the range of frequencies received.
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Ideally, F(v) consistsof one or more rectangular passbands. As a practical matter, the

geophysical algorithms will almost certainly incorporate weighting functions computed for

these ideal passbands. Otherwise, their coefficients would all be instrument-dependent. If

I(v) were independent of frequency, of course, then the measurement would be unaffected

by the relative shape of the instruments' passbands. Hence the effect of departures from

the ideal passband shape is observation-dependent. Given an ensemble of atmospheric

profiles, a particular response function F(v) will generate the error e = IA - IA*, where IA*

is the average intensity corresponding to ideal rectangular passbands. Then e will have

some average value over the ensemble, and a variable component. The average value of e

can be treated as a calibration offset, and compensated. The variable component in e would

then contrbute to the error budget. This source of error should be held to a few tenths of a

Kelvin, which is the basis for specifications of maximum passband ripple or asymmetry.

4.4. Directivity Calibration

The power intensity IA(V) input to the instrument is related to the incident intensity

Ip(n,v) by

3

IA(V ) = (4x) -1 _ ]] Ip(a,v) Dp(a,v) dl'2, (20)

p---0

where the index p denotes the Stokes parameters (p = 0 for total intensity, etc.; see Kraus,

1966) and Dp(f_,v) is the directive gain function of the antenna, which is normalized so

that

_ Do(k"2,v) df_ = 47t, (21)

where the integrations are carded over all solid angles l).

Equation (20) shows that when the scene intensity viewed by the instrument is

polarized, which applies to those channels that are sensitive to the surface, then knowledge

of the polarization characteristics of the antenna is necessary. The usual measurements of

power in two orthogonal polarizations (e.g. P(0 °) and P(90°)) do not suffice to determine

all four Stokes parameters. With a third measurement P(45°), the first three Stokes

parameters can be calculated in unnormalized form as
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Do = p(0 o) + P(90 o) (22a)

D 1 = P(0°) "P(90°) (22b)

D 2 = 2P(45°) - P(0°) -p(90o). (22c)

The coordinate system used for antenna measurements can subsequently be converted to a

geodetic coordinate system by a rotation. The magnitude of D 3 (circular polarization) can

also be determined from this set of three measurements by making use of the fact that as a

deterministic system, the antenna is completely polarized; hence

D32 = Do2- D12- D22. (22d)

However, AMSU and MHS do not have channels that measure emission from the

mesosphere, and therefore one can exclude any significant 13.

Associated with the directive gain function Do(O) are the beamwidth 0Hp which is the

angular distance in a given plane betwen the half-power points; and beam efficiency,

EM = (4x)-I _ Do(O,v ) dO,

main

lobe

(23)

where "main lobe" denotes a cone of angular diameter 2.5 times the beamwidth.

It is desirable that measurements of Dp(O,v) should have a dynamic range extending

from the maximum value D = max(Do(O)) to a level such that the unknown contribution to

I A from lower levels cannot exceed a small value, such as 1 K. For Io - 300 K, that level

would be -25 dB. A rough estimate of D is given by (229 ° / 0Hp)2. For AMSU-A, with a

beamwidth of 3.6 °, D = 36 dB; hence a dynamic range of 61 dB would be required. For

MHS, with 0Hp = 1.1 °, D = 46 dB and a dynamic range of 71 dB would be needed.

Unfortunately it is very difficult to measure antenna patterns accurately over such large

dynamic ranges. The relative measurements of Do(O) could be calibrated by an absolute

determination of D, and Eq. (21) then could be used to calculate the fraction of total power

from Do(O) below the noise level of the relative measurements. However, the absolute

measurement of D would be required to have an accuracy of +1/300, or + 0.015 dB, which
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isunattainable.

For the above reasons, it is desirable to supplement the usual pattern measurement with

a radiometric measurement of _M or of the integrated power within some larger solid angle

within which the relative antenna pattern is known. The fraction of power contributed from

Do(_ ) below the noise level of the pattern measurement can then be estimated. This type

of measurement can be done by cutting a circular hole in a large sheet of absorbing material

and placing it so that the opening subtends the solid angle of the measurements, and other

lines of sight from the instrument are intercepted by absorbers at the same temperature.

Thermal contrast is obtained by viewing a tank of liquid nitrogen with absorber at the

bottom or (for window channels) the sky through the hole.

4.5 Cross-Calibration of AMSU-A with MIMR

AMSU and MIMR have different fields of view, viewing angles, frequencies, and

polarizations, as shown in Figure 4.1. Note that only the channels near 23.8, 31.4, and 89

GHz are comparable. Of most serious concern is the difference between the MIMR

channel at 36.5 GHz and AMSU at 31.4 GHz. Also note that the footprints are vastly

different, being approximately 10 km in the case of MIMR and 50 km at nadir for AMSU.

Figure 4.2 shows that the frequency difference between the two instruments, 31 GHz

and 36 GHz, can correspond to perhaps 10 K of brightness temperatures betwen these two

channels. However, note that for a wide variety of meteorological conditions this gradient

between the two brightness temperatures does not vary more than a few degrees.

Figure 4.3 suggests the impact of viewing angle. Note the brightness temperatures for

certain polarizations can differ by 30 K or more for incidence angles of 30 ° and 50 ° (ray

angles from zenith). This is for smooth soil, however, one of the worst situations. At

wavelengths shorter than the 21 cm pictured here, the angle and polarization dependencies

are less. Furthermore, the angular dependence can be estimated to first order by noting the

difference in brightness between vertical and horizontal polarization measured by MIMR.

Figure 4.4 illustrates the same phenomena for another worst case, ocean. Although these

data are also for lower frequencies than those observed by AMSU, the phenomena are

somewhat similar, although less marked. Therefore, cross-calibration will require

averaging many data points, each corrected for the differences between the two

instruments. These differences are mildly nonlinear.

One simple approach to detecting drifts between the calibration constants for the two

instruments is then suggested: linear regression between the two sets of observed
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brightnesstemperatures,wherethesebrightnesstemperaturesareobservedat the same
points, but with the associatedfixed differences in viewing angle, frequency, and
polarization. The brightnesstemperatureTBI for thefirst instrument,predictedfrom the
measuredTB2for thesecondinstrument,wouldbe

TB1 = D12 TB2. (24)

Then calibration drift will be evident if DI2 is based on data in one time period and the

observations are from another. Coincidence between angles, spots and climates would

improve accuracy. Nonlinear effects can be accommodated by regressing instead the

observed brightness tempeatures against those predicted for that same instrument based on

the physical parameter retrievals of the second instrument.

TB1 = D12 TB1P' (25)

where TB1P is computed nonlinearly from the geophysical parameters estimated by

instrument 2.
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Appendix A

Preliminary Execution/Operations Phase Data Plan for the

Advanced Microwave Sounding Unit

A.1 Introduction

The AIRS Science Team members will generate algorithms and provide the Team

Leader Science Computing Facility (TLSCF) with documented prototype software which

can be used by TLSCF programmers to produce the operational software package. Because

definition of the EOS program remains fluid, and because detailed integration of the

AMSU/MHS and AIRS infrared data reduction plans is incomplete, this document is

subject to further revision.

A.2 Input Requirements

Inputs to the geophysical algorithms will be: (1) the prior AIRS retrieval of temperature

and humidity profiles, including surface temperature; (2) all AMSU/MHS brightness

temperatures; (3) a land/water flag; (4) surface elevation; (5) latitude and longitude; (6)

scan position; and (7) spacecraft roll, pitch, and yaw. Current AIRS radiances are

incorporated in a subsequent processing step performed on the outputs of the algorithms

described here.

A.3 Algorithms

Parameter N_ture of Algorithm

initial temperature profile

initial humidity profile

cloud liquid water

sea-ice cover

land snow/ice cover

precipitation intensity index

iterated matrix minimum-variance

iterated matrix minimum-variance

iterated matrix minimum-variance

polynomial/matrix

polynomiagmatrix/discriminants

polynomial/matrix & spatial filtering

Transmittance algorithms for AMSU/qVIHS frequencies, incorporating the results of

recent laboratory measurements, were delivered to the TLSCF in August 1991 and updated

January 1992. Updates will be provided as appropriate; NASA ER-2 aircraft observations

are expected to provide more def'mitive parameters before 1995.
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A.4 ProcessingRequirements

A.4.1 CalibrationAlgorithm

The NOAA calibrationalgorithmsfor AMSU/MHS will beusedfor EOS. Revised
thermal-vacuumcalibrationcoefficientsandantennapatterncorrectionsareto beprovided

by theinstrumentvendor.

A.4.2 GeophysicalAlgorithm

The algorithm equationsare discussedin Section 2. Initial simulations of the
temperatureandhumidityprofileretrievalalgorithmshavebeenrunonanApollo DN 3500,
which is a 0.3 Mflops workstation. A test of 100 profiles ran in 140 seconds when only

temperature was retrieved; the humidity retrieval adds -30% to the run time. This implies

the equivalent of 0.6 Mflop per retrieval. (Computation requirements for the other

parameters will be much less.) At 50 km resolution, 3.75 spots are observed per second;

thus the processing rate would be 2.3 Mflops. However, most of these retrievals required

two iterations, whereas with real data sequential profiles will be very similar; thus we

expect that the average number of iterations will be close to one. Because these estimates

are heavily dependent upon the number of iterations required, more precise estimates must

await future study. Presently estimated lines of executable source code for the AMSU

portion of the retrieval package are 2000, and approximately 1 Mbyte of memory will be

used for storage of constants.

A.5 Output Products

The geophysical parameters produced by SCF will be: (1) temperature profile (degrees

K) at -60 levels; (2) humidity profile (molecules/cm 2) at the same levels; (3) cloud liquid

water (kg/m 2) (over water surface); (4) numeric index of precipitation intensity,

radiometric mm hr-1; (5) sea ice cover (fraction), ice age index, and indicated salinity; (6)

land snow-ice cover (yes/no; index). Data quality indicators will be associated with each

parameter.

These data will be produced at the rate of 120 Mbyte/day (nominally 50-km resolution).

Formats and media for the standard output products will be set by CDHF. Additionally a

15-kin product may be provided, based upon the MHS data, but this remains to be

determined.
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A.6 Validation Data

Algorithm testing, prior to launch of EOS, will make use of data from NOAA satellites

and NASA aircraft. Validation of products and parameters will be done with the data

sources listed in Table A 1. In the case of the temperature and humidity profiles, there will

also be a standard output product from AIRS/AMSU which will be validated by the AIRS

team by comparison with radiosondes. Testing and validation of AMSU data will be done

on datasets of limited extent, perhaps on the order of 30 days altogether, and will include

consistency checks with AIRS clear-air optical retrievals. Cryospheric and precipitation

algorithms will be tested in part using AMSU data available from NOAA satellites.

A.7 Simulation Data

A prescription for generating simulated AMSU/MHS data will be provided in support

of AIRS/AMSU/MHS software system testing and evaluation.

A.8 Documentation

The theoretical basis of algorithms, software specifications and test procedures will be

documented in compliance with AIRS project requirements. Modularity will also support

portability and maintainability.

A.9 Algorithm Development Schedule

The schedule is given in Table A2. This schedule is based on the assumption of a

December 2000 launch. Since the algorithm can be tested on NOAA satellite and aircraft

data prior to EOS launch, it is anticipated that no significant postlaunch changes will be

necessary, although some coefficients may be revised.
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TableA1 Validationdatasources

Paxameter

Microwavetransmittance

AMSU/MHS TB's

Temperatureprofile

Humidityprofile

Cloud-liquid content

Sea-ice cover and

Land snow-ice cover

Precipitation index

model

instrumental

intermediate

intermediate

standard (lev. 2)

standard (lev. 2)

nonstandard

(intermediate)

V_li_tation Meth_t

ER2 flights

calculation from RAOBS

consistency with AIRS*

consistency with AIRS*

1. internal consistency

2. MIMR comparison

1. AIRS; clear-sky conditions

2. MIMR comparison

radar

* AIRS/AMSU retrievals of temperature and humdidity profdes will be validated by

comparision with radiosondes.

Table A2 Algorithm Development Schedule

Algorithm Development

Documentation

Develop product validation plans

Deliver requirements description

Deliver detailed description for architectural design

Deliver prototype code

Deliver test scenarios

Deliver expected output specifications, validation

EOS launch

Mission operations and data analysis

Jan. 91 - Apr. 98

Jan. 91 - Jan. 97

Sept. 93 - Dec. 99

Dec. 91

Oct. 94

Apr. 96

Apr. 97

Apr. 98

Dec. '00

Dec. '00 - Dec. 2004
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Appendix B

MEMORANDUM

To: AIRS Project

From: Philip Rosenkranz

Date: March 7, 1991

Subject: Simulation of clouds for AIRS and AMSU

The Crone algorithm for producing simulations of cloud fields was discussed at the

last AIRS team meeting in Pasadena. This model generates the three-dimensional envelope

(i.e. the shape) of the clouds. Except for a thin cirrus layer, the clouds are assumed to be

opaque at infrared wavelengths. Microwaves, however, will penetrate clouds to some

extent, so it will also be necessary to specify the contents of the clouds. In doing this, one

should distinguish between the Rayleigh and the Mie regions in drop sizes, and between

liquid and ice.

The boundary between applicability of the Rayleigh, or small-droplet, approximation

and the exact Mie theory is frequency dependent. At 30 GHz, the Rayleigh approximation

underestimates extinction by -20% for liquid droplets of 200 It radius, while at 300 GHz,

the corresponding upper limit would be 50 It. (See Figures 5-42 and 5-43 of Chahine et

al., 1983.) This range of frequencies roughly encompasses the AMSU channels, so the

Rayleigh approximation will be limited to fair-weather clouds. Within the range of validity

of this approximation, scattering from liquid droplets is at least an order of magnitude less

than absorption; thus the non-scattering equation of radiative transfer can be used. The

absorption coefficient can be computed from a model such as the one formulated by Liebe

et al. (1989). The Rayleigh absorption depends on only a single parameter of the drop-

size distribution, which is the mass density.

The boundary between liquid water and ice in clouds can be treated as a temperature

threshold. Liquid droplets can be supercooled to a temperature as low as -40 C; however,

a more typical lower bound is -10 C. Ice has a smaller dielectric constant than liquid water,

and consequently much less absorption; see, e.g., Table 1 of Liebe et al. For the small

particles of ice in fair-weather clouds, scattering can also be neglected. Hence, the
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simulationof thesecloudsneedsto specifythedensityof liquid water,butnot ice.

Table5-7 of Chahine et al. lists 19 different cloud and precipitation models. From

this table, one can deduce the following typical values of liquid-water density for fair-

weather clouds:

stratus: 0.15 g/m 3

low stratus or stratocumulus: 0.25 g/m 3

cumulus: 0.5 g/m 3

These three values should provide a realistic range in the simulation. Within the clouds,

whether liquid or ice, the relative humidity should be set to 100%.

When precipitation is present, the Mie theory should be used to calculate extinction

and scattering. This statement applies to both the liquid and ice components; the cirrus

anvils associated with thunderstorms produce observable scattering at 89 GHz and higher

frequencies. Scattering should also be included in the radiative transfer calculations, as in

Gasiewski and Staelin (1990). For the simulation of these clouds, one might choose from

Table 5-7 of Chahine et al. the steady rain (3 mm/hr), cumulus with rain (12 mm/hr), and

cumulonimbus with rain (150 mm/hr) models. These models include coefficients

necessary to specify the entire distribution of drop sizes.

The simulation problem can be approached in stages, where the fhst stage would be

clear amaospheres, the second would involve only fair- weather clouds, and the third would

include some precipitation. Software to do the calculations of absorption, scattering and

radiative transfer discussed above can be supplied to the AIRS project by MIT.
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MEMORANDUM January 9, 1992

TO:

From:

Subject:

H. H. Aumann

P. W. Rosenkranz and D. H. Staelin

Use of AMSU-A2 module channels in AIRS geophysical product generation

The AMSU-A instrument comprises two modules: A 1 contains the oxygen-band

(temperature) channels and the 89-GHz window channel; A2 contains the 23.8-GHz water

channel and the 31.4-GHz window channel.

Use of the A2 channel_ in generation of AIRS standard products. The way in which

the 23- and 31-GHz channels are used depends on the type of surface. Over ocean, these

channels are used to derive total precipitable water vapor and total liquid water (clouds). In

addition to being a standard product itself, total water vapor provides a tie point or

constraint for the humidity profile that is obtained from MHS and AIRS. It also provides a

necessary correction for AIRS measurements of surface temperature. Over land or ice

surfaces, the 23-, 31-, 50- and 89-GHz claannels are used in combination to infer the

surface emission spectrum, which is used in both the AMSU temperature and MHS

moisture profile retrievals. Total water vapor cannot be derived from these channels over

land, and therefore the MHS moisture profile in lower atmospheric levels (pressure > 800

mbar) is 20 to 30% less accurate.

MIMR could serve as a partial substitute for AMSU-A2; however, MIMR has a

narrower swath than AMSU, 1400 vs 2200 kin. A further incompatibility results from the

50 ° fixed incidence angle of MIMR, as opposed to the variable incidence angle of

AMSU/MHS/AIRS. The surface emission spectrum depends (in general) on incidence

angle, and therefore some ad hoc assumptions about this dependence would have to be

introduced in order to use MIMR data.

In terms of overall objectives, AIRS, AMSU and MHS are intended to function

together as a sounding system that can eventually migrate to a NOAA platform. Deletion of

any module would be a deficient strategy because it would diminish the demonstration of

the potential of this system.

Use of the A2 channels in gencration..of AIRS research products. Over the ocean, the

total water vapor product derived from the 23- and 31-GHz channels provides a correction

term for estimation of rain from the 90 GHz channel, which would otherwise suffer from

confusion with vapor, particularly in the tropics. (The 90-GHz channel is as sensitive to

vapor as the 23-GHz, but several times more sensitive to liquid water, with respect to both

absorption and scattering.) Over land, the spectral gradient of emission in the 23 to 31-

GHz range is used as an indicator of snow cover.
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Figure 2.1. AIRS/AMSU profde retrieval.
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cryosphere algorithm
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Figure 2.2. Surface parameter estimation.
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TB, Tatm

I initialize H20 vapor ]

i
tO excess over cosmic

correct TB for 02 and H20 vapor opacity

I
(test for convergence )

no yes

iterations > 10 or non-decreasing residuals?

no yes

solve for To, Too, vo
from 3 channels

set error flag

calculate emissivities

return vapor, parameters
in surface model, and
emissivities

solve for vapor increment from 1 channel;
add vapor increment to output vector and
apply limits

Figure 2.3. Cryosphere algorithm.
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Tsurf, Tatm, TB

initialize V, L, u*; Icompute smooth-ocean surface emissivities

I
change temperatttre scale Ito excess over cosmic

correct TB for atmospheric opacity;
calculate emissivities with roughness

test for convergence

no
yes

iterations > 10 or non-decreasing
residuals?

no yes

solve for V, L, u* increments set error

flag

add increments to output vectors
and apply limits

calculate albedo

(89 GHz)

return geophysical

parameters and
emissivities

Figure 2.4. Hydrosphere algorithm.
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inputs: meas. brightness temperatures; initial profiles of temperature,
vapor, and liquid; angle, location, surface elevation and emissivity;
covariances of temperature and vapor.

I
calc. absorption coefficients (60 GHz) }

I
_,..[ calc. brightness temp.

(60 GHz) and weights for

v} temperature profile

yes no, and iteration limit exceeded

test convergence at 60 GHz }

n°I
I solve for temperature I

profile increment I

!
I calc. saturation vapor profile and I set error code I
I absorption coefficients (60 and 183 GHz) I . I

' I
""-'_1 calc. brightness temp. (183 GHz) I

[ and weights for vapor/liquid profile ] [

.n.o,.and iteration [
I

1" test convergence at183 GHz "] limit exceeded ]

YtS6'0budI_z°t _' no[ yes, and _ , .,-- I., I

] als°at60_H_ Iseterr°rc°ael [

reapportion H20 absorption to vapor and |
liquid depending on saturation vapor |

[and total vapor if ivailable] {

return profiles of temperature, vapor, liquid; error code

Figure 2.5. Profile retrieval algorithm.
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DO for each level

old liquid > 0 ?

no yes

old vapor + increment > saturation vapor ? old liquid + increment < 0 ?

no yes no yes

vapor = old vapor + increment liquid = old liquid + increment

liquid = f(T) (old vapor + increment -
saturation vapor)

vapor = saturation vapor

vapor = saturation vapor +
(old liquid + increment)/f(T)

liquid = 0

continue to next level

Figure 2.6. Reapportioning of H20.
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PRECIPITATION RETRIEVALSUSING AMSU MICROWAVE
OXYGEN-BAND DATA

FILTERED T B

OFFSET FILTERED T B

BRIGHTNESS

TEMPERATURE T B

FILTERED
CLIPPED SIGNAL

PRECIPITATION

SIGNAL

|

CLIPPED FILTERED T B

CLEAR,._--_,...__'_CLEAR-----'-
PRECIP

SPACECRAFT MOTION

DHS.November 199t

Algorithm subject to change

Figure 2.7

31



45,,- ........ . .: ',' _.;' 1
L c Cumulus Ceils _ _ • /]

L " _(ature or i-- _ _

Dissipating Cells, t'_---"_

® r ) :"---'-_"",,,.,"->-J,t{.,V l

LC'-- +_l,. "'. " _." =o. -° _ ,I

:- \,,7 i
L 1 > ,/"

- L I...._._.J I

:_ s0_-- _-,-\ \

L "

25 t ,,,-.- ..... 1
90 8.5 80 7.,5 70

W. Longifude (deg)

(o)

0 ....... -+ +,,- • , ,',,,r

°"E Cumulus Ceils +
Molutl ot

Dissipating Cells o I " _ :"

its '°.+o 'llv ' I
• , 1 o _++"7"" ,t",

o ego +I_. _ . "" "
"- ! o +.sl, ;: :
• • ._i,, |

• :f__ • . :
_I0 _ oO ,] g ." .,. •
_- I / ia.o P, I

. + o^,/ oa;_, .
-- 3 zo/o"o ' " |. "

O I 0__ wv •

('3 5 o #'-.o o_t° g + :

0 H o o o t I
._o_ / + : v v

• L L L • i 11 l I _ - I t _ /II • •

O 0 10 ] . ] .100
Cell Size (,kin)

(b)

Figure 2.3(a) The locations of the IIS-GFIz rain ceilob.rntions dutir_ GALE amd_

COEMEX. (b) Scatter plot of the optical ce[I--£op,¢itucte a_ and cellsize s+ for the

II8-GHz rain cellobservations. (Gasiewski, 1988)

32



i
I

l
I
!

i

I
1.2 1.4 1.6 1.8

Offsef frequency
2.0

Line (GHz)

Figure 2.9 Ensemble of 118--Glqz bri[_htnesstemperature perturbation spectr_ ob-

served by the MTS over cumulus, ma.tureIand dissipa}-m_..raincellsd_urhug GALE and

COHI4EX. (Gasiewski, 1988)

33



I00

_OL--
rm
-_

_0 u.l
.o ¢0
.¢C ¢,_

f '
i ,0.01

!,

0.001

10
Wavelength (cm)

I 0.!

PR=IO0 mm/hf _ _ )

Zr _

E //'/ , _"
? f/ ',," .. /, ]
L I,, ,/_ l/

i ///,/,.,
_///,/ , !, ,///I 11_

_-//;_'_'Zo' -,

I 't0 I _% I 000Frequency Hz)

I
I00_

E r
,. . [_

rn .

o_
_0 0.1

I

z 0.01
1

0.001

Wavelength (cm)
I0 I 0.1

/

/ /

F / i

r / 1
I _/

.m _/ /= /

__l _ /,n //

! ":' ,,/>, _/ /'
/ ,//,'

,,ll

_ -i) _i ,

/j S

10 It% 1000Frequency Hz)

I
i

i --
,,p

!(b)

Figure 2.'l(gPolydispersive Mie hydromeceor z_bsorption and sc_:terin_;. _d,
_sumin_, • ._rsh_II-P_mer '1945! cirop size_distribu_i.o.n. Computations _rom S_v-

_Lge !lgT$] for _Lbsorption (o) and scz_r, ering (x) are plotted for comparison. _j

assuming • Sekhon-Sriv_c_v_ [I910] clis_ribu_ion. C_Icul_,_ions _e shown for precipi-

tation ra_tes of i,I0, _nd 40 mm/hr t'or bo_h phases _nd I00 mm/hr for liquid. (From
Gasiewski, 1988)

34



_300

(/I

U_

j_

_D

N
3Z 200

I

od

| I I I I I I

2_ pass
- o pass ($221140-221 728 %V C)22407-224024 )

__,__o.,MP liquid/SS ice
• " ''' MP Liquid/MP ice , c

O

7
0

0

I0

0.03

X

0.1

100
100 150 200 250 300

53.65-OHz Brightness (K)

Figure ,2.1 ]Brightne_ temperatures over precipitation for similar weighting function

O._ channels at 53.665 GHz and-118.75=1.47 GHz. The isolated points a_ _TS data

observed during two passes over strong;convection on June 29, 1986 durin$ COH,X_fEX._

The solid lines axe computed constant altitude curves paxametrized by celldensity.

Computations used the A-D model with a MaxshaJI-PaJmer liquid size distribution

and a $ekhon-Srb, a.stava(solid)or MaxshaII-Pakner (dashed) icesize distribution.The

crosshairs (lower leftcorner) indicate an offseta£1dedto the observed datzLfor agreement

with the computed brightne_ses over hydrometeor-free regions. (Gas ±ewsk£, 1988 )

35



0 ; _ i i

0 _
"_3 (7"73)_,_'_'--(4"78)f'

2 -50 (_.o,)__ /
--&

Q "-'i',, 4
•--150 %1

(6.s3

-200
_.,,

- cP-2 ,-od_,-/mod,,a (738)[
! l I L 1 i" /

-3oo 20 -_o 0 _0 20
KL Mode 2 Amplifude (K)

Figure ;l.12Trajectories of the two most dominant II8--GHz KL spectral coefficients (kl
t IIII I I I

and _:2) for the precipitation cell couplet observed on July 1I, i9815 dur_g C(gD._vI_X :

N adiral radiometric bri_;htness observations by the MTS (solid) and computations

based on co mcidentall_ observed CP-2 radar reflectivity using, the iterative radiative

t[ansfer model described in the text (dashed}' Selected times for computed points

(indicated in paxenthe_es) are in minutes a_ter 2150 UTC. .,, A com-

puted-less-observed bias in ks of ,-, 3 to 7 K is noted. (Gas£ewskl, 1988)

36



/
/

/

/

Fic, ure 4.1

COMPARISON OF
MIMR AND AMSU SPECIFICATIONS

MIMRIFreq. aTrms Footprint
(GHz) (K) (km)(km)

6.8 0.15 39 60
10.65 0.37 25 38
18.7 0.50 14 22
23.8 0.43 13 20
36.5 0.44 8 12
9O.O O.7O 3 5

Freq. ,_Trms Footprint2AMSU
(GHz) (K) (km)(km)

NA
NA
NA

23.8
31.4
89.0

0.3 50 50
0.3 50 50
0.5 5O 5O

Polarization

MIMR --vertical and horizontal polarization

AMSU -- linear polarization at an angle of 90-e degrees, where

e is the scan angle from nadir. At e=90degrees, the
polarization would be horizontal.

Angle of Incidence

MiMR -- 50o from zenith, at the ground
AMSU -- 0o to nearly 60o; estimate <35o for MIMR coincidence

-24OO KM
AMSU SWATH

5 f iden

I I
I I

I I

I I

! I

I_ --J
I - - I
• -1400 KM .

MIMR SWATH

1 Based on "The Multi-Frequency Imaging Microwave Radiometer-

Instrument panel report", ESA SP-1138, August 1990.

2 At nadir
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